Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(2): 770-780, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198709

RESUMO

13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.


Assuntos
Isótopos de Carbono , Meios de Contraste , Ácido Pirúvico , Ácido Pirúvico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido Láctico
2.
J Am Chem Soc ; 145(20): 11121-11129, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172079

RESUMO

Conventional nuclear magnetic resonance (NMR) enables detection of chemicals and their transformations by exciting nuclear spin ensembles with a radio-frequency pulse followed by detection of the precessing spins at their characteristic frequencies. The detected frequencies report on chemical reactions in real time and the signal amplitudes scale with concentrations of products and reactants. Here, we employ Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), a quantum phenomenon producing coherent emission of 13C signals, to detect chemical transformations. The 13C signals are emitted by the negatively hyperpolarized biomolecules without external radio frequency pulses and without any background signal from other, nonhyperpolarized spins in the ensemble. Here, we studied the hydrolysis of hyperpolarized ethyl-[1-13C]acetate to hyperpolarized [1-13C]acetate, which was analyzed as a model system by conventional NMR and 13C RASER. The chemical transformation of 13C RASER-active species leads to complete and abrupt disappearance of reactant signals and delayed, abrupt reappearance of a frequency-shifted RASER signal without destroying 13C polarization. The experimentally observed "quantum" RASER threshold is supported by simulations.

3.
Angew Chem Int Ed Engl ; 62(5): e202215678, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36437237

RESUMO

The feasibility of Carbon-13 Radiofrequency (RF) Amplification by Stimulated Emission of Radiation (C-13 RASER) is demonstrated on a bolus of liquid hyperpolarized ethyl [1-13 C]acetate. Hyperpolarized ethyl [1-13 C]acetate was prepared via pairwise addition of parahydrogen to vinyl [1-13 C]acetate and polarization transfer from nascent parahydrogen-derived protons to the carbon-13 nucleus via magnetic field cycling yielding C-13 nuclear spin polarization of approximately 6 %. RASER signals were detected from samples with concentration ranging from 0.12 to 1 M concentration using a non-cryogenic 1.4T NMR spectrometer equipped with a radio-frequency detection coil with a quality factor (Q) of 32 without any modifications. C-13 RASER signals were observed for several minutes on a single bolus of hyperpolarized substrate to achieve 21 mHz NMR linewidths. The feasibility of creating long-lasting C-13 RASER on biomolecular carriers opens a wide range of new opportunities for the rapidly expanding field of C-13 magnetic resonance hyperpolarization.


Assuntos
Hidrogênio , Prótons , Hidrogênio/química , Espectroscopia de Ressonância Magnética , Acetatos/química
4.
Sci Adv ; 8(28): eabp8483, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857519

RESUMO

The spatial resolution of magnetic resonance imaging (MRI) is limited by the width of Lorentzian point spread functions associated with the transverse relaxation rate 1/T2*. Here, we show a different contrast mechanism in MRI by establishing RASER (radio-frequency amplification by stimulated emission of radiation) in imaged media. RASER imaging bursts emerge out of noise and without applying radio-frequency pulses when placing spins with sufficient population inversion in a weak magnetic field gradient. Small local differences in initial population inversion density can create stronger image contrast than conventional MRI. This different contrast mechanism is based on the cooperative nonlinear interaction between all slices. On the other hand, the cooperative nonlinear interaction gives rise to imaging artifacts, such as amplitude distortions and side lobes outside of the imaging domain. Contrast mechanism and artifacts are explored experimentally and predicted by simulations on the basis of a proposed RASER MRI theory.

5.
Chemphyschem ; 22(24): 2526-2534, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34580981

RESUMO

We introduce a Spin Transfer Automated Reactor (STAR) that produces continuous parahydrogen induced polarization (PHIP), which is stable for hours to days. We use the PHIP variant called signal amplification by reversible exchange (SABRE), which is particularly well suited to produce continuous hyperpolarization. The STAR is operated in conjunction with benchtop (1.1 T) and high field (9.4 T) NMR magnets, highlighting the versatility of this system to operate with any NMR or MRI system. The STAR uses semipermeable membranes to efficiently deliver parahydrogen into solutions at nano to milli Tesla fields, which enables 1 H, 13 C, and 15 N hyperpolarization on a large range of substrates including drugs and metabolites. The unique features of the STAR are leveraged for important applications, including continuous hyperpolarization of metabolites, desirable for examining steady-state metabolism in vivo, as well as for continuous RASER signals suitable for the investigation of new physics.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
6.
Angew Chem Int Ed Engl ; 60(50): 26298-26302, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34459080

RESUMO

We report on the utility of Radiofrequency Amplification by Stimulated Emission Radiation (RASER) for background-free proton detection of hyperpolarized biomolecules. We performed hyperpolarization of ≈0.3 M ethyl acetate via pairwise parahydrogen addition to vinyl acetate. A proton NMR signal with signal-to-noise ratio exceeding 100 000 was detected without radio-frequency excitation at the clinically relevant magnetic field of 1.4 T using a standard (non-cryogenic) inductive detector with quality factor of Q=68. No proton background signal was observed from protonated solvent (methanol) or other added co-solvents such as ethanol, water or bovine serum. Moreover, we demonstrate RASER detection without radio-frequency excitation of a bolus of hyperpolarized contrast agent in biological fluid. Completely background-free proton detection of hyperpolarized contrast agents in biological media paves the way to new applications in the areas of high-resolution NMR spectroscopy and in vivo spectroscopy and imaging.


Assuntos
Líquidos Corporais/química , Meios de Contraste/análise , Humanos , Campos Magnéticos , Espectroscopia de Prótons por Ressonância Magnética
7.
J Magn Reson ; 322: 106815, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33423756

RESUMO

In a RASER (Radio-frequency Amplification by Stimulated Emission of Radiation), the fast relaxing electromagnetic modes of an LC resonator are enslaved by the slow nuclear spin motion, whose coherence decays with the transverse relaxation rate γm=1/T2∗. Such a system obeys the slaving principle, mathematically identical with the adiabatic elimination procedure, leading to multi-mode RASER equations. If the pumping rate of nuclear spin polarization Γ>>γm, a second adiabatic elimination process applies and the spectral properties of the RASER can be predicted. The resulting model is similar to the model of two non-linear coupled oscillators and predicts the observed RASER phenomena, including frequency combs and mode collapse. If the second adiabatic elimination is not applicable, mode collapse is completely absent and successive period doubling processes and chaos occur at very high population inversions. We compare these theoretical predictions with experimental results from a PHIP (Para-Hydrogen Induced Polarization) pumped 1H RASER. Moreover, in SABRE (Signal Amplification By Reversible Exchange) pumped 1H experiments, RASER revivals are observed long after the parahydrogen pumping source has been switched off. All these findings shed light onto the links between NMR spectroscopy, RASER physics, synergetics and chaos theory. Several new applications are envisioned in the fields of quantum sensor technology, structure investigation or magnetic resonance imaging (MRI).

8.
J Chem Phys ; 152(18): 184202, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414242

RESUMO

High-field nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for identification and characterization of chemicals and biomolecular structures. In the vast majority of NMR experiments, nuclear spin polarization arises from thermalization in multi-Tesla magnetic fields produced by superconducting magnets. In contrast, NMR instruments operating at low magnetic fields are emerging as a compact, inexpensive, and highly accessible alternative but suffer from low thermal polarization at a low field strength and consequently a low signal. However, certain hyperpolarization techniques create high polarization levels on target molecules independent of magnetic fields, giving low-field NMR a significant sensitivity boost. In this study, SABRE (Signal Amplification By Reversible Exchange) was combined with high homogeneity electromagnets operating at mT fields, enabling high resolution 1H, 13C, 15N, and 19F spectra to be detected with a single scan at magnetic fields between 1 mT and 10 mT. Chemical specificity is attained at mT magnetic fields with complex, highly resolved spectra. Most spectra are in the strong coupling regime where J-couplings are on the order of chemical shift differences. The spectra and the hyperpolarization spin dynamics are simulated with SPINACH. The simulations start from the parahydrogen singlet in the bound complex and include both chemical exchange and spin evolution at these mT fields. The simulations qualitatively match the experimental spectra and are used to identify the spin order terms formed during mT SABRE. The combination of low field NMR instruments with SABRE polarization results in sensitive measurements, even for rare spins with low gyromagnetic ratios at low magnetic fields.

9.
Angew Chem Int Ed Engl ; 59(22): 8654-8660, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32207871

RESUMO

Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low-field NMR spectrometer incorporating a highly specialized radio-frequency resonator, where a high degree of proton-spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high-quality factors. We use a commercial bench-top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton-hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio-frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.

10.
J Magn Reson ; 235: 130-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23932399

RESUMO

The first instance of para-hydrogen induced polarization (PHIP) in an NMR experiment was serendipitously observed in the 1980s while investigating a hydrogenation reaction (Seldler et al., 1983; Bowers and Weitekamp, 1986, 1987; Eisenschmid et al., 1987) [1-4]. Remarkably a theoretical investigation of the applicability of para-hydrogen as a hyperpolarization agent was being performed in the 1980's thereby quickly providing a theoretical basis for the PHIP-effect (Bowers and Weitekamp, 1986) [2]. The discovery of signal amplification by a non-hydrogenating interaction with para-hydrogen has recently extended the interest to exploit the PHIP effect, as it enables investigation of compounds without structural alteration while retaining the advantages of spectroscopy with hyperpolarized compounds [5]. In this article we will place more emphasis of the future applications of the method while only briefly discussing the efforts that have been made in the understanding of the phenomenon and the development of the method so far.


Assuntos
Hidrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Animais , Catálise , Campos Eletromagnéticos , Enzimas Imobilizadas/química , Gases/química , Humanos , Indicadores e Reagentes , Imageamento por Ressonância Magnética
11.
Chem Commun (Camb) ; 49(67): 7388-90, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23862181

RESUMO

SABRE hyperpolarizes substrates by polarization transfer from para-hydrogen in a metal complex. We have measured the signal enhancement of pyridine and its exchange rate in various [Ir(NHC)(Py)3(H)2](+) complexes to gain insight into their dependence on the N-Heterocyclic Carbene (NHC) ligand's steric and electronic properties.


Assuntos
Complexos de Coordenação/química , Irídio/química , Metano/análogos & derivados , Piridinas/química , Catálise , Hidrogênio/química , Ligantes , Metano/química
12.
Phys Rev Lett ; 110(13): 137602, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581373

RESUMO

We report new phenomena in low-field 1H nuclear magnetic resonance (NMR) spectroscopy using parahydrogen induced polarization (PHIP), enabling determination of chemical shift differences, δν, and the scalar coupling constant J. NMR experiments performed with thermal polarization in millitesla magnetic fields do not allow the determination of scalar coupling constants for homonuclear coupled spins in the inverse weak coupling regime (δν

13.
Top Curr Chem ; 335: 1-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22167575

RESUMO

This chapter addresses the limits of low-field NMR spectroscopy for chemical analysis and will answer the question of whether high-resolution NMR spectroscopy for chemical analysis of solutions can be achieved with magnetic fields much lower than 0.1 T without losing the chemical information which at high field is derived from the chemical shift and the indirect spin-spin or J-coupling. The focus is on two major issues. First, the thermal spin population differences given by the Boltzmann distribution are small at low field and so is the signal-to-noise-ratio when starting measurements from thermal equilibrium. Second, the possibility of identifying chemical groups is explored at low magnetic fields where the chemical shift can usually no longer be resolved.

14.
Chemphyschem ; 13(18): 4120-3, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23161842

RESUMO

Welcome to the guest zone: By combining hyperpolarized xenon and simple low-field NMR devices it is possible to obtain more control over hydrogels that show potential as drug delivery systems. An alternative way of polymer swelling-degree determination is demonstrated with real-time NMR analysis. An ideal region for solvent uptake can be defined in which the absorbed solvent molecules are completely confined in the nano-porous network of the hydrogel.


Assuntos
Hidrogéis/química , Polímeros/química , Xenônio/química , Acrilamidas/química , Resinas Acrílicas , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Gases Nobres/química , Solventes/química
15.
Chemphyschem ; 12(16): 2941-7, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21994161

RESUMO

Magnetic resonance of hyperpolarized (129)Xe has found a wide field of applications in the analysis of biologically relevant fluids. Recently, it has been shown that the dissolution of hyperpolarized gas into the fluid via hollow-fiber membranes leads to bubble-free (129)Xe augmentation, and thus to an enhanced signal. In addition, hollow-fiber membranes permit a continuous operation mode. Herein, a quantitative magnetic resonance imaging and spectroscopy analysis of a customized hollow-fiber membrane module is presented. Different commercial hollow-fiber membrane types are compared with regard to their (129)Xe dissolution efficiency into porcine blood, its constituents, and other fluids. The presented study gives new insight into the suitability of these hollow-fiber membrane types for hyperpolarized gas dissolution setups.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Membranas Artificiais , Oxigênio/sangue , Polienos/química , Isótopos de Xenônio/sangue , Animais , Desenho de Equipamento , Hemoglobinas/análise , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Porosidade , Solubilidade , Soluções , Propriedades de Superfície , Suínos
16.
Phys Chem Chem Phys ; 13(30): 13759-64, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21720644

RESUMO

Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen-deuterium gas is formed, which was detected with (1)H and (2)H NMR spectroscopy at low magnetic fields of B(0) = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency).


Assuntos
Aminoácidos/química , Hidrogênio/química , Peptídeos/química , Deutério/química , Gases/química , Hidrogenação , Espectroscopia de Ressonância Magnética
17.
Analyst ; 136(8): 1566-8, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21331396

RESUMO

Advances with para-hydrogen induced polarization open up new fields of applications for portable low-field NMR. Here we report the possibility of tracing drugs down to the micromolar regime. We could selectively polarize nicotine quantities similar to those found in one cigarette. Also less than 1 mg of harmine, a drug used for treatment of Parkinson's disease, and morphine extracted from an opium solution were detectable after polarization with para-hydrogen in single-scan (1)H-experiments. Moreover, we demonstrate the possibility to selectively enhance and detect the (1)H-signal of drug molecules with PHIP in proton rich standard solutions that would otherwise mask the (1)H NMR signal of the drug.


Assuntos
Resíduos de Drogas/análise , Espectroscopia de Ressonância Magnética/métodos , Harmina/análise , Hidrogênio/química , Morfina/análise , Nicotina/análise , Ópio/química , Nicotiana/química
18.
Anal Chem ; 82(17): 7078-82, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20701300

RESUMO

Sensitivity poses a persistent challenge to NMR spectroscopy and magnetic resonance imaging (MRI). Nonhydrogenative para-hydrogen induced polarization (NH-PHIP) has recently emerged as an efficient method to substantially increase the sensitivity of high-field NMR. Here, we report the feasibility of applying NH-PHIP in the low-field NMR. A trace amount of pyridine of just a few nanoliters ( approximately 12 nmol) in a 0.4 mL NMR sample (a concentration of 31 microM or 10(16)/cm(3)) could be measured in a single scan by NH-PHIP. There is a striking difference in the signal-to-noise ratio (SNR) between thermal prepolarization and NH-PHIP: The SNR of the prepolarized (1)H NMR signal decreases linearly with decreasing (1)H concentration ([(1)H]) while the SNR in NH-PHIP experiments first increases with decreasing [(1)H], then remains constant over 2 orders of magnitude, and finally decreases linearly with decreasing [(1)H]. A hitherto unknown potential opens up for trace analysis by low-field NMR in the bio-, chemical, and material sciences.

19.
Phys Rev Lett ; 94(19): 197602, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090211

RESUMO

Conventional high resolution nuclear magnetic resonance (NMR) spectra are usually measured in homogeneous, high magnetic fields (>1 T), which are produced by expensive and immobile superconducting magnets. We show that chemically resolved xenon (Xe) NMR spectroscopy of liquid samples can be measured in the Earth's magnetic field (5 x 10(-5) T) with a continuous flow of hyperpolarized Xe gas. It was found that the measured normalized Xe frequency shifts are significantly modified by the Xe polarization density, which causes different dipolar magnetic fields in the liquid and in the gas phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA